Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Med Trop Sante Int ; 2(2)2022 06 30.
Artigo em Francês | MEDLINE | ID: mdl-35919251

RESUMO

Background: Malaria is a parasitic disease caused by a hematozoan of the genus Plasmodium. Early diagnosis followed by effective treatment is one of the keys to control this disease. In Madagascar, after more than 60 years of use for the treatment of uncomplicated malaria, chloroquine (CQ) was abandoned in favor of artesunate + amodiaquine (ASAQ) combination because of high prevalence of CQ treatment failure. Surveillance based on the assessment of therapeutic efficacy and genetic markers of resistance to antimalarials is therefore essential in order to detect the emergence of potentially resistant parasites as early as possible. In this context, our study aimed to genotype the Plasmodium falciparum chloroquine resistance transporter gene or Pfcrt and Plasmodium falciparum multidrug resistance gene 1 or Pfmdr1 in isolates collected from children in the district of Vatomandry. Methods: A total of 142 P. falciparum isolates collected during active case detection of malaria in children under 15 years old, between February and March of 2016 and 2017 in Vatomandry district, were analyzed. Pfcrt (K76T codon) and Pfmdr1 (N86Y codon) genotyping was carried out by polymerase chain reaction followed by enzymatic digestion (restriction fragment length polymorphism) or PCR-RFLP. Results: The successful rates of amplification of Pfcrt and Pfmdr1 genes were low, around 27% and 39% respectively. The prevalence of isolates carrying the mutant Pfcrt K76T codon and the mutant Pfmdr1 N86Y codon was 2.6% [95% confidence interval (95% CI): 0.1 - 15.0%] and 36% [95% CI: 23.7 - 49.7%] respectively. Conclusion: Despite the limited number of samples analyzed, our study highlighted the circulation of isolates carrying both the mutant Pfcrt K76T and Pfmdr1 N86Y alleles. Although the prevalence of mutations in Pfcrt and Pfmdr1 genes that we observed was low, other studies should be carried out in order to follow the evolution of these markers in time and space. The use of more sensitive methods will better characterize P. falciparum strains circulating in Madagascar. Artesunate-amodiaquine is used as a first-line treatment for uncomplicated malaria in the country; it is also crucial to monitor the other codons, i.e. 184 and 1246 of the Pfmdr1 gene, implicated in the resistance of P. falciparum to amodiaquine in Africa.


Assuntos
Malária Falciparum , Proteínas de Membrana Transportadoras , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Plasmodium falciparum , Proteínas de Protozoários , Amodiaquina/farmacologia , Artesunato/farmacologia , Criança , Cloroquina/farmacologia , Resistência a Medicamentos/genética , Genótipo , Humanos , Madagáscar/epidemiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
2.
Malar J ; 20(1): 432, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732201

RESUMO

BACKGROUND: Since 2005, artemisinin-based combination therapy (ACT) has been recommended to treat uncomplicated falciparum malaria in Madagascar. Artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) are the first- and second-line treatments, respectively. A therapeutic efficacy study was conducted to assess ACT efficacy and molecular markers of anti-malarial resistance. METHODS: Children aged six months to 14 years with uncomplicated falciparum malaria and a parasitaemia of 1000-100,000 parasites/µl determined by microscopy were enrolled from May-September 2018 in a 28-day in vivo trial using the 2009 World Health Organization protocol for monitoring anti-malarial efficacy. Participants from two communes, Ankazomborona (tropical, northwest) and Matanga (equatorial, southeast), were randomly assigned to ASAQ or AL arms at their respective sites. PCR correction was achieved by genotyping seven neutral microsatellites in paired pre- and post-treatment samples. Genotyping assays for molecular markers of resistance in the pfk13, pfcrt and pfmdr1 genes were conducted. RESULTS: Of 344 patients enrolled, 167/172 (97%) receiving ASAQ and 168/172 (98%) receiving AL completed the study. For ASAQ, the day-28 cumulative PCR-uncorrected efficacy was 100% (95% CI 100-100) and 95% (95% CI 91-100) for Ankazomborona and Matanga, respectively; for AL, it was 99% (95% CI 97-100) in Ankazomborona and 83% (95% CI 76-92) in Matanga. The day-28 cumulative PCR-corrected efficacy for ASAQ was 100% (95% CI 100-100) and 98% (95% CI 95-100) for Ankazomborona and Matanga, respectively; for AL, it was 100% (95% CI 99-100) in Ankazomborona and 95% (95% CI 91-100) in Matanga. Of 83 successfully sequenced samples for pfk13, no mutation associated with artemisinin resistance was observed. A majority of successfully sequenced samples for pfmdr1 carried either the NFD or NYD haplotypes corresponding to codons 86, 184 and 1246. Of 82 successfully sequenced samples for pfcrt, all were wild type at codons 72-76. CONCLUSION: PCR-corrected analysis indicated that ASAQ and AL have therapeutic efficacies above the 90% WHO acceptable cut-off. No genetic evidence of resistance to artemisinin was observed, which is consistent with the clinical outcome data. However, the most common pfmdr1 haplotypes were NYD and NFD, previously associated with tolerance to lumefantrine.


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Adolescente , Criança , Pré-Escolar , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Combinação de Medicamentos , Feminino , Humanos , Lactente , Madagáscar/epidemiologia , Malária Falciparum/epidemiologia , Masculino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase , Polimorfismo Genético , Gravidez , Prevalência , Recidiva , Reinfecção
3.
Malar J ; 20(1): 239, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044837

RESUMO

BACKGROUND: Assessment of the genetic diversity of Plasmodium falciparum parasites from various malaria transmission settings could help to define tailored local strategies for malaria control and elimination. Such assessments are currently scarce in Madagascar. The study presented here aimed to bridge this gap by investigating the genetic diversity of P. falciparum populations in three epidemiological strata (Equatorial, Tropical and Fringes) in Madagascar. METHODS: Two-hundred and sixty-six P. falciparum isolates were obtained from patients with uncomplicated malaria enrolled in clinical drug efficacy studies conducted at health centres in Tsaratanana (Equatorial stratum), Antanimbary (Tropical stratum) and Anjoma Ramartina (Fringes) in 2013 and 2016. Parasite DNA was extracted from blood samples collected before anti-malarial treatment. Plasmodium species were identified by nested PCR targeting the 18 S rRNA gene. The genetic profiles of P. falciparum parasites were defined by allele-specific nested PCR on the polymorphic regions of the msp-1 and msp-2 genes. RESULTS: Fifty-eight alleles were detected in the P. falciparum samples tested: 18 alleles for msp-1 and 40 for msp-2. K1 (62.9%, 139/221) and FC27 (69.5%, 114/164) were the principal msp-1 and msp-2 allele families detected, although the proportions of the msp-1 and msp-2 alleles varied significantly between sites. Polyclonal infections were more frequent at sites in the Equatorial stratum (69.8%) than at sites in the Tropical stratum (60.5%) or Fringes (58.1%). Population genetics analyses showed that genetic diversity was similar between sites and that parasite flow within sites was limited. CONCLUSIONS: This study provides recent information about the genetic diversity of P. falciparum populations in three transmission strata in Madagascar, and valuable baseline data for further evaluation of the impact of the control measures implemented in Madagascar.


Assuntos
Variação Genética , Malária Falciparum/transmissão , Plasmodium falciparum/genética , Madagáscar
4.
Am J Trop Med Hyg ; 99(4): 995-1002, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30182923

RESUMO

Community prevalence of infection is a widely used, standardized metric for evaluating malaria endemicity. Conventional methods for measuring prevalence include light microscopy and rapid diagnostic tests (RDTs), but their detection thresholds are inadequate for diagnosing low-density infections. The significance of submicroscopic malaria infections is poorly understood in Madagascar, a country of heterogeneous malaria epidemiology. A cross-sectional community survey in the western foothills of Madagascar during the March 2014 transmission season found malaria infection to be predominantly submicroscopic and asymptomatic. Prevalence of Plasmodium infection diagnosed by microscopy, RDT, and molecular diagnosis was 2.4%, 4.1%, and 13.8%, respectively. This diagnostic discordance was greatest for Plasmodium vivax infection, which was 98.5% submicroscopic. Village location, insecticide-treated bednet ownership, and fever were significantly associated with infection outcomes, as was presence of another infected individual in the household. Duffy-negative individuals were diagnosed with P. vivax, but with reduced odds relative to Duffy-positive hosts. The observation of high proportions of submicroscopic infections calls for a wider assessment of the parasite reservoir in other regions of the island, particularly given the country's current focus on malaria elimination and the poorly documented distribution of the non-P. falciparum parasite species.


Assuntos
Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Plasmodium falciparum/genética , Plasmodium vivax/genética , Adolescente , Adulto , Doenças Assintomáticas , Criança , Pré-Escolar , Estudos Transversais , Sistema do Grupo Sanguíneo Duffy/genética , Feminino , Expressão Gênica , Inquéritos Epidemiológicos , Humanos , Lactente , Madagáscar/epidemiologia , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Malária Vivax/diagnóstico , Malária Vivax/parasitologia , Masculino , Microscopia , Plasmodium falciparum/classificação , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/classificação , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase , Prevalência , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Fatores de Risco , População Rural
5.
Malar J ; 17(1): 284, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081916

RESUMO

BACKGROUND: Since 2006, the artemisinin-based combination therapy (ACT) are recommended to treat uncomplicated malaria including non Plasmodium falciparum malaria in Madagascar. Artesunate-amodiaquine (ASAQ) and artemether-lumefantrine are the first- and second-line treatment in uncomplicated falciparum malaria, respectively. No clinical drug efficacy study has been published since 2009 to assess the efficacy of these two artemisinin-based combinations in Madagascar, although the incidence of malaria cases has increased from 2010 to 2016. In this context, new data about the efficacy of the drug combinations currently used to treat malaria are needed. METHODS: Therapeutic efficacy studies evaluating the efficacy of ASAQ were conducted in 2012, 2013 and 2016 among falciparum malaria-infected patients aged between 6 months and 56 years, in health centres in 6 sites representing different epidemiological patterns. The 2009 World Health Organization protocol for monitoring anti-malarial drug efficacy was followed. RESULTS: A total of 348 enrolled patients met the inclusion criteria including 108 patients in 2012 (n = 64 for Matanga, n = 44 for Ampasipotsy), 123 patients in 2013 (n = 63 for Ankazomborona, n = 60 for Anjoma Ramartina) and 117 patients in 2016 (n = 67 for Tsaratanana, n = 50 for Antanimbary). The overall cumulative PCR-corrected day 28 cure rate was 99.70% (95% IC 98.30-99.95). No significant difference in cure rates was observed overtime: 99.02% (95% IC 94.65-99.83) in 2012; 100% (95% IC 96.8-100) in 2013 and 100% (95% IC 96.65-100) in 2016. CONCLUSION: The ASAQ combination remains highly effective for the treatment of uncomplicated falciparum malaria in Madagascar.


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/prevenção & controle , Adolescente , Adulto , Criança , Pré-Escolar , Combinação de Medicamentos , Feminino , Humanos , Lactente , Madagáscar , Masculino , Adulto Jovem
6.
Malar J ; 16(1): 139, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376871

RESUMO

BACKGROUND: The prevalence and variants of G6PD deficiency in the Plasmodium vivax-endemic zones of Madagascar remain unknown. The admixed African-Austronesian origins of the Malagasy population make it probable that a heterogeneous mix of genetic variants with a spectrum of clinical severity will be circulating. This would have implications for the widespread use of P. vivax radical cure therapy. Two study populations in the P. vivax-endemic western foothills region of Madagascar were selected for G6PD screening. Both the qualitative fluorescent spot test and G6PD genotyping were used to screen all participants. RESULTS: A total of 365 unrelated male volunteers from the Tsiroanomandidy, Mandoto, and Miandrivazo districts of Madagascar were screened and 12.9% were found to be phenotypically G6PD deficient. Full gene sequencing of 95 samples identified 16 single nucleotide polymorphisms, which were integrated into a genotyping assay. Genotyping (n = 291) found one individual diagnosed with the severe G6PD Mediterranean C563T mutation, while the remaining G6PD deficient samples had mutations of African origin, G6PD A- and G6PD A. CONCLUSIONS: Deployment of P. vivax radical cure in Madagascar must be considerate of the risks presented by the observed prevalence of G6PDd prevalence. The potential morbidity associated with cumulative episodes of P. vivax clinical relapses requires a strategy for increasing access to safe radical cure. The observed dominance of African G6PDd haplotypes is surprising given the known mixed African-Austronesian origins of the Malagasy population; more widespread surveying of G6PDd epidemiology across the island would be required to characterize the distribution of G6PD haplotypes across Madagascar.


Assuntos
Doenças Endêmicas , Genótipo , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Malária Vivax/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Testes Diagnósticos de Rotina , Técnicas de Genotipagem , Humanos , Lactente , Recém-Nascido , Madagáscar/epidemiologia , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Prevalência , Análise de Sequência de DNA , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...